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This paper concerns itself with the detection of a binary signal in
additive, but statistically unknown, noise. The signal will be either a
constant signal,or a slowly fading signal. The noise will be arbitrary
except for the one restriction that its probability density function exhibit
some type of exponential behavior on its ''tails. "

The detector will be based upon Gumbel's extreme-value theory (EVT),
Extreme-value theory is a branch of mathematical statistics which considers
the asymptotic distributions of the maximum and minimum samples from
sets of independent and identically distributed random variables. This
theory will be used to obtain estimates of the optimum threshold and the
probability of error of a binary detector. Confidence intervals are obtained
for all estimates.

A comparison is made between the EVT detector and another non-
parametric detector, one which is based upon the rank test., It is shown
that in certain situations, the EVT detector becomes identical to the

Neyman-Pearson detector, and therefore will outperform the rank or any

other nonparametric detector.

ii



When the signal fades, it is shown that the EVT detector
becomes adaptive and can track the fade. Computer simulations are
run for a fading signal, and the results verify the theory.

Finally, while the above results are obtained with the help of
an initial learning period, a study is made, for the case of detecting a
constant signal in additive noise, of the performance of the detector when
the learning period is removed. It is shown that for low error rates, the
estimates will converge to values close to those obtained when the learning
period is present. A computer simulation is run for this case, and

again the results verify the theory.
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INTRODUCTION

Nonparametric detectiqn is that branch of communication theory
which concernsitself with detecting signals in statistically unknown noise.
In this report, a low-pass binary signal is assumed, and in most cases,
the system under consideration is an on-off system. In this type of
problem, the optimum threshold (that is, the threshold which results in
minimum probability of error) could be found by setting up the likelihood-
ratio if the probability density of noise and the probability density of
signal-plus-noise were known. For equal apriori probabilities of trans-
mission, the threshold would occur at the point of intersection of the two
probability density functions. When the density functions are unknown,
suboptimum detection schemes must be used.

It will be the object of this report to obtain a nonparametric de-
tector which yields an error rate comparable to that obtained using an
optimum parametric detector. The nonparametric detector employed
is based upon extreme-~-value theory.

Extreme-value theory is a branch of mathematical statistics
which deals with the asymptotic probability distributions of extreme
samples taken from sets of independent and identically distributed
random variables. This theory is used in a nonparametric detection
scheme by using the knowledge of the behavior of the extremes to obtain
knowledge of the behavior of the initial variate on its " tails", In other
words, if we know the properties of the maximum of a set of n inde-
pendendent and identically distributed random variables, we will use
this information to obtainthe properties of the original random variable
in the vicinity of the maximum value.

In Chapter 1, a brief review of extreme-value theory is given,



and the general method of using this theory to detect signals in unknown
noise is presented. The only restriction that is placed on the noise and
signal-plus-noise densities is that they exhibit some type of exponential
behavior on their " tails".

Chapter 2 considers specific examples of detecting a constant
signal in unknown noise. In addition, a comparison is made with another
nonparametric detector, namely the rank detector. It is shown that the
extreme-value theory (EVT )detector can, in certain situations, perform
as well as the optimum Neyman-Pearson detector.

In Chapter 3, a fading signal is considered. Two different
schemes are presented. The first is appropriate when the detector uses
a constant threshold, and the second forms the basis for an adaptive re-
ceiver. In the latter case, computer simulations are run, and the
results are seen to verify the theory.

The procedure presented in the first three chapters requires that
the receiver employ an initial learning period, during which the detector
samples the noise and the signal-plus-noise separately. Chapter 4 con-
siders a scheme using decision-directed measurements,in which the learning
period is eliminated. Again, computer simulations are run and can be

seen to substantiate the results predicted by the theory.
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CHAPTER 1 - BASIC THEORY

1.1 Extreme-Value Theory

Extreme-value theory (EVT) is the theory of the probability dis-
tributions of the extremes of sets of independent and identically distributed
random variables. That is, given n independent random variables
Xy o X all of which have the same probability density, what is the
distribution of the largest (or smallest) sample?

It is well known how to obtain the exact distributions for these
extremes, but, in general, these functions are quite complicated. Gumbel
has derived simple asymptotic expressions (for large n ) for the distri-
butions of the extremes, and these results are the basis of this report.l‘ 1,12

Gumbel' s results are subdivided into three categories, according to
the type of distribution for the random variable x . The first, and most
important, is the exponential-type, which deals with those distributions
which approach either unity on their right-hand tail or zero on their left-
hand tail at least as fast as an exponential,

The second categery deals with unlimited distributions which only
possess a finite number of moments (e. g., Cauchy density). A density is
limited to the right if it is identically zero for x greater than some number

C and limited to the left if it is identically zero for x less than some

1°
number C2 . Otherwise, it is unlimited. Limited distributions are con-
sidered in Gumbel's third category. Since the last two types can be ob-
tained from the exponential-type by simple transformations, and since
the most common noise densities encountered in practice fall into the
exponential class, only that class will be considered in this report.

Let f(x) and F(x) be the probability density function and the

cumulative distribution function respectively of the random variable x .

Then x will be said to be of the exponential=type if it satisfies one of the
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two following equations: 1.3

For maximum values:

1

lim ) -y JEE) (1. 1)

x —e o 1-F(x) X~ 00 f(x)
where
df(x)

t -
f! (x) = dx
For minimum values:

. f(x) _ . f' (x)
B0 FTOT T AR w0 T (-2

The most common examples of densities of this type are the ex-
ponential distribution itself, the Rayleigh distribution, and the chi-square
distribution for maximum values, and the normal distribution for both
maximum and minimum values.

Equation (1.1) ((1.2)) insures that the right (left) hand tail of the
distribution behaves as an exponential. Gumbel shows this in his deri-
vation of the extreme-value densitiesl ' 4(see Appendix A). Starting with
an arbitrary density that satisfies the first condition, for example, and
using a Taylor series expansion about a parameter he labels u, Gumbel

shows that, asymptotically,

where a and u_ are defined as

o

Flu )= 1-= (1. 3)
and

anznf(un), (1.4)

n being the number of samples from which the maximum is chosen.
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u is called the expected largest value. Its relation to n can
be thought of as follows: n is the number of samples one would have to
take, on the average, to find a sample which is greater than u .

a is called the intensity function. In general, intensity functions

a(x) are definedl' > such that

a(x) dx = S%E(% ,

and represent the probability that a value, known to be equal to or greater
than x, is between x and x+dx .

The analogous parameters for minimum values, u, and a; , are

1

defined as follows:

Flu) = ln , (1. 5)
and
a, = nf(ul). (1. 6)

Since the Taylor series expansion is taken about un(or ul), the
important point to note is that for any distribution in the exponential class,
except the exponential distribution itself, the Taylor series coefficients
are all approximations. This means, of course, that when using Gumbel's
results, they must only be used in an appropriate range about u (or ul).

Gumbel proceeds from this point to derive the final form of the
distribution function for the extreme-value. That form is a double expo-

nential, Specifically,

-a_(x-u_) (1. 7)
F (x):e-e n n 3
max
and
a,(x-u,q)
_ -e 1 1
Fmin(x) = 1l-e . (1.8)

Since we are not interested in the distribution of the extreme-



-6-

values, but rather in the distribution of the initial variate on its tails,
these last two formulas are not the important results. The limiting

forms for the initial variate (see Appendix A) are

F(x) = l-% e—an(x-un) , (1. g)
X e QO
and
F(x) = - e01(x-ug) (1. 10)
X = =Q0

It should be noted that the probability of the initial variate being
greater than a fixed number can be obtained from the probability that the
maximum value is greater thanthat number directly. This can be shown
easily as follows:

Let F(x) be the initial distribution, and ®(x) be the distribution
of the maximum value. Since ® (x) = [F(x)]nl.é, we can always invert the
above equation, and, knowing @ (x), obtain F(x). However, this is only
convenient if we are dealing with a single point, and even then it is more
trouble than is necessary. If we should want to use F(x) in an equation,
say a likelihood-ratio equation, the equation would become extremely
complex,

Therefore, we will now leave Gumbel' s final result, and go back to

his intermediary result, namely, equations (1.9) and (1. 10).
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1.2 Relationship between EVT and Detection Theory

In the previous work in nonparametric detection, the detection
schemes were based upon various nonparametric statistics, most notably
the rank test or some modification of the rank test. 1.7,1.8,1.9,1. 10
The main trouble with these tests is that they do not use the amplitude
information available from the data samples, but rather use information
such as the algebraic sign of the sample or the relative ordering of the
sample by size (rank).

It is the purpose of this report to present a detection scheme which
does use amplitude information., This scheme is based on the observation
that the only parts of the unknown distributions that are of interest are
the tails of those distributions. This is precisely what we can obtain
from Gumbel,

More specifically, if we knew the probability densities for noise and
signal-plus-noise, what we would do would be to form the likelihood-
ratio and solve for the threshold. Since we assume we do not know the
distributions, we first take an initial series of measurements, estimate

uppu s a;, and a s and then form the likelihood-ratio. That is,

a ~a_{x-u_)
fn(x)~;-r-1- e ™ 0T, | (1. 11)
n
and
a a (x-u )
_1 1 1 . 1. 12
fom®) ~ 7= e ( )
Thus,
e e-an(xt-un)
f (x,) n
t n
= B, (1.13)
foan(®) 0y oy (xwy
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where B is the ratio of the apriori prohabilities of sending signal-plus-
noise and noise only.

Solving eq. (1.13) for X, yields

“n M1
u . a, +u_a_ +1ln(— 1 -=)
171 n n a, n_B
x, = 1 _n (1.14)
t a, +a :

1 n

For P=1, the false alarm probability, P_._, and the false dismissal

fa
probability, Pfd , are !
_ 1 -aq(xg-up)
Pfa = -ITr—l € ’ (1. 15)
and
o) (xg-uy)

(1. 16)

- L
Pfd-nle

Of course, the u's and a's employed in eq. (1.15) and eq. (1.16)
are only estimates of the true values, since the actual distributions are
unknown. However, we will initially assume the u's and a's are known
exactly. This then gives an upper bound to the performance of the system,
and thus gives an approximation to the actual system behavior. (That is,
if, knowing the actual values of u and a, we cannot predict with rea-
sonable accuracy the threshold and probability of error, then we cannot
hope to do so using estimated values.)

Let us illustrate the above concepts by considering a numerical
example. Table (1) shows results obtained when x has a normal density
with zero mean and unit variance. It was computed by choosing a thres-
hold, calculating the actual Pfa (that is, finding the area under an N(0, 1)

curve for all x greater than the threshold), and then using eq. (1.15) at
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the same threshold for differept values of n. It can be seen that there
is a range of n giving acceptable estimates for the probability of error.
That is, to measure a probability of error equal to Pe , there are certain
acceptable sample sizes n which can be used. This result can be seen
from the Taylor series. Since the series was expanded about U and
since the coefficients in the series are only approximations (except for
the exponential distribution), the only exact value we can find is F(un).

However, at x = u , we have

1
Pe: I-F(un)=l—1-t (1.17)

If we are in a reasonably restricted range about x = u . we will not
have an exact estimate of F(x), but we will have a " good" estimate.
" Good" here is defined as whatever is acceptable to the particular situation.

Hence, if we have a communication system in which the probability
of false alarm is P__, the optimum value of n would be n = 1 . Also,

fa ﬁfa

in estimating the threshold of the system, we would want u_ to be as close
as possible to the actual threshold, since the further away we are, the

more inaccurate is the Taylor series.

TABLE (1)

Approximations to Pfa for Various Values of n .

Actual

n\Pfa 1.35x 1073 3.16 x 1077 2.87 x 107"
102 1. 66 x 1073 11.5x107° 80.9 x 107"
103 1.36 x 1073 4.74 x 1077 16.8 x 10™'
10* 1.71x1073 3.3x107° 6.4l x 107"
10° 2.9x1073 3.29x107° 3.73x107"
10® 5.83x 107> 3.73x107° 2.98x107"
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1.3 Estimation of Parameters and Confidence Interwvals

Returning to the nonparametric communcation problem, we must

first find a method to estimate the unknown parameters Uppays U and a .

1
There are a variety of ways of accomplishing this, but only the simplest
of these is presented here, 1. 11
To this end, we must return to Gumbel' s double exponential dis—
tribution. Using Gumbel's terminology, we call y = an(x-un) the reduced

largest variate (the word " reduced"” is used because y is dimensionless).

If we let ¢ (y) be the probability density function of y , we have

oply)= e77° 7. (1. 18)

The generating function of y is then

S -y

- yt -y-e
G (t) = [ e dy . (1. 19)
-0
Letz = e 7.
This gives
0 tez X _tlnz -z
G (t) = -f e’ dz = 0[ e e " dz (1. 20)
n
o)
i t z
=([ z e “dz =TI (1-t) ,
where

Qo

Tt) = [[ ztm1 e % dz
is the gamma function.

Similarly, we can show that the generating function of the reduced
smallest variate is

Gl(t) = T(1+#) .

2
v . 1 T 2

Since I' (1) = - y, y being Euler's constant, and I' (1) = s +v°,

we can obtain the first and second moments of y , and from these, the
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mean and variance of the extreme-values themselves.

This results in the following expressions:

E(x ) = E(xmax)e u +1 (1.21)
n
E(x)) = E(x_. )= uj - g— (1.22)
1
2 TI'Z 1
= Var(.xmax) =z -a—z- (1.23)
n
2 _ _1r2 1 4
oq= var(xmin) =z —a--z : (1.24)
1

If we now replace the theoretical means and variances with the
sample means and sample variances of the extreme values, we will have
two sets of two equations and two sets of two unknowns, and we can therefore
solve for the u's and a's .

As mentioned above, the procedure is used because of its simplicity,
not because it is optimum. If more accurate estimates are needed, there
are various maximum-likelihood estimates that can be used. 1.12,1.13,1. 14
The trouble with these estimates is the difficulty in solving the resulting
equations.

Returning to the straightforward estimates, the obvious questions
are how good are they, and, more important, how good are the resultant
estimates of the probability of error andthe threshold?

The fact that the sample mean and sample standard deviation
are asymptotically normal leads to results which are tractable.

15 The

The following asymptotic results are given by Gumbel: .
limiting means of the sample mean and sample standard deviation are

the corresponding population values (that is, the actual mean and standard

deviation of the distribution). Also,
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Ao o2 Byl
var (G):—N,- (-T-—) N (1.25)

and

2
var (aX_ +b%) = Z-[a® +ab By + bz(sz-l)/4], (1. 26)

where 9 is the sample standard deviation, ;0 is the sample mean,

2 -3
By = k3 &,

, and B, = p, |J.2-2, i, being the ™ central moment. Finally,
N is the number of extremes that are used, each extreme coming from
n independent samples (i. e,, there will be a total of nN samples).

Again using the generating function for the reduced variate, we can
compute ﬁl and 62 . The final results are: */5.1‘—'1- 3 and [32 = 5.4 for
maximum values, and ~/B—1' = ~1.3 and [32 = 5.4 for minimum values.

We therefore conclude that the estimates of u and %are asympto-

tically normal, unbiased estimates with variances given as follows:

var ('/IT) =—1—’2-1- , (1.27)
a Na
and
var({\l) =1 "%4 (1.28)
Na

In order to obtain confidence intervals on the estimates for the
threshold and probability of error, we need the following results from
Cramer: 1.16

1. If an arbitrary function of sample moments is con-
tinuous in some neighborhood of the corresponding population moments,
if the function has continuous first and second derivatives with respect
to the sample moments in that neighborhood, and if the sample moments
are sums of independent identically distributed random variables which

obey the standard (Lindeberg-Le’:vy) central-limit theorem, then the function

is asymptotically normal with parameters na and o 'f\z



12

2. Iff, £f , and fm denote the value of the function f and
2

its two first order partial derivatives (assuming it is a function of just

two sample moments) evaluated at the point m = E(ml) and m, = E(mz)
(that is, the population values), then
T]? = f ’ (1. 29)
and
2 2
O = var(ml) fm +2 cov(rnl, mz) fm fm + var(mz) fm
f 1 1 72 2
(1. 30)

For the estimate of probability of error, two asymptotic distri-

butions will be given. One will be for the case when x_ is a constant,

t
such as an on-on system having a threshold which is always zero. 1. 17

The other will be appropriate when X, is estimated {rom the u's and
a's by eq. (1.14).
When X, is constant, the estimate for the false-alarm probability,

written in terms of the sample mean and sample variance of maximum

values, is

o

A -G(X—G)l- Ty [x, -X_+
P :l e nt n_L o :76:&12 t n T )
fa n n
OTs X, ~X
_r [ t n]
A1y 6 J&‘nz
Pfa-: ;1- e e . (1. 31)

A - -
If we let P, equal the value of Pf evaluated at x_ = E(x_), and ¢ T s
fa a n n n n

and P, — and P A > the corresponding values of the partial derivatives of

fa X fa
A .
ﬁf with respect to &’n and O’nz respectively, then,
a
34 =P

P, fa, (1. 31)
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and

2
A2l (1. 33)

are respectively the mean and variance of the asymptotic normal distri-
bution. A specific example will be given later.

— A
The cov(xn,crnz) is shown in Cramér to be

1.18
cov(z B %) = 3
n'n) = -

For the means and variances of the limiting distributions of Q\(t
and the estimate of error probability when the threshold is a random
variable, we must apply the two dimensional version of Cramgr' s theorem,
since we now have functions involving sample moments of two distributions,
namely moments of minimum values, and moments of maximum values,

~”
If, for either case, f represents the function to be estimated, f repre-

sents the estimate, and f; , f(/)_\z ,f; , and fg_z represent the appro-
n

n 1 1

priate partial derivatives (all evaluated at ;n = E(;fn), @nZ = crnz .
- _ - A2 _ 2
X, = E(xl), and o, =0 )5 we-have

n?: f » (1. 34)
and

2 - — A2 A2 2
of = var(xn) f;n+ 2 cov(xn, Ty ) f}?nf{r\nz + var(o‘n) f(/rxr%

, - 2 - A2 A2
+ var(xl) f;l + 2 cov(x » 0} )f;lf(ljgf +var (o'1 )fé1 .

(1. 35)
These results show that, asymptotically, the estimates of

interest have a limiting normal distribution. These distributions have
as their means the functions evaluated at the point where the sample
moments are equal to their expected values, that is, the population

moments,
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Also, the limiting dist;ibutions have variances which go to zero
as 1%» .

Finally, it should be emphasized that the functions we are
estimating are the results based on the theoretical values of Gumbel.
For example, when we say that the mean of the limiting normal distribution

of the false alarm estimate is

Ty =P, ,
ﬁfa fa

. 1 ~a.,.(x,~u,)
- n‘t™n
Pfa is equal to i s

not the exact false alarm error we would
have if we knew the actual density function of the noise. In other words,
it should always be remembered that we are estimating statistically not

what we really want, but rather an approximation to what we want.
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1.4 Numerical Examples

Several examples will now be given so that it can be seen what type
of confidence intervals these densities produce. In all cases except one,
the confidence intervals will be functions of the actual parameters,
which are, of course, unknown. Therefore,in order to evaluate the
intervals, it is necessary to assume the actual form of the probability
density functions.

The one exception to the above is the confidence interval on a .
We could find a confidence interval on o directly by using equations
(1.29) and (1. 30). However, if we obtain intervals oa %, using the fact
that it is asymptotically unbiased along with eq. (1.27), our results will
be simpler,

That the confidence interval on (71;) does not depend on any

parameterscan be shown as follows:

Pr[aaf_ﬁiba] = Pr[]—a-:!'a-ﬁ-é_al—a] = . (]]: - ) e Na d(l/&)
T (e
Ngo 1 /ba

where @ (x) is the cumulative N(0, 1} distribution (i. e.,
1 x _y%/2

—— e dy).
../Z'rr -0

Table (2) below summarizes some numerical results for N = 20 .

TABLE {2)

Confidence Intervals on &

o (x) =

a b Pr[aa < & < ba]
: 2 o(4. 27)-¢(-2.135) = . 985
.67 1.3 0(2.135)-p(-1. 41) = . 899

.8 125 o(l. 07) - p(-. 854) = . 661
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-
To obtain confidence intervals on@n,it is necessary to assume

a specific distribution. Therefore, using an N(O0, l)‘with n = 100, we

obtain the parameters a = 2. 66 and u o= 2.33. Proceedings as above,

we can show that the
Prau_ < O < bu ] =¢[(b-1)(-439 o u )] - o (a-1)(- 439a u )].

Specifically, with the above numbers and N = 20, we have
< A < = - =
Pr[. 9u < u Sl lun] = (2. 73)-0p(-2. 73)= . 99367,
and

< < = )=
Pri. 8un Su S 1. Zun] = (1. 37) -o(-1. 37)- . 829

It can be seen that u can be estimated much more accurately than a -
As a final example, we will use equations (1. 32) and (1. 33) to obtain

a confidence interval on the false-alarm estimate. From eq. (1. 31), we

obtain
p oL o-anlxeup)
fa n ’
b
a
P —= fa . .n e-an(xt-un) ,
fa x 5% - n
xX=1 +-X-
noa,
A oo T
n
. » K,
oP 30>
- fa _ 1 “n L -a_(x -u_)
Pfag\'2 8(’152 _ “n 2 (xt Yn é_) ntt
x=u +-X T
%n
A A
g =
" Jea
n
Also, we have 1.19
_ o 2
var(x_) = --1\-?- .
2 ﬁ2'1 1
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and
- 2, "
cov (xn,crn ) = =

Inserting these expressions in equations (1. 32) and (1. 33), along

with the appropriate moments calculated from eq. (1. 20), and forming the

A
ratio of the mean of Pfa to its standard deviation, we obtain

Pfa _ [ 6N 1/2
ol T . 3/2(x,-u) 1. Yx, -u_) ]
B 2., 2. 404(6) ™% £~0nl
fa w1+ 3 = + s— 1
™ n T

n

We can now compute the confidence interval as follows:

A (b-1) Pfa (a-l)Pfa
Pr[a Pfa5 Pfa-<-b Pfa] = CP( T i.\) ) - @( o’ﬁ )
fa

fa

As a specific example, consider a Rayleigh random variable,

that is, one whose probability density function is

- X
.Z‘_Z.e 2o x>0
f(x) = o .
0 x <0
Using values of o =1, X, = 4,03, n = 100, u = 3.04, Qn= 3. 04, and
N = 20 bt'Pfa—ll d
= » we obtain —x— = . 3l, an
P
fa
Pfa A
Pr[—z-—ipfa<zpf]=@(1.31)-(p(-.66)=.65,
and
P A

o (2.62) - p(~.87) = 2804




1,5 Review

Before proceeding to the study of communication systems for
which this method can be applied, it might be well to review what has
been done in this chapter.

The fundamental theory for a nonparametric detector has been
given. This theory is based on Gumbel' s theory of extreme-~values,
The one restriction to the noise considered in this report is that it be
of the exponential-type. This however, is not a necessary restriction,
since other forms of Gumbel's asymptotes can be used.

Using this theory, estimates of those parts of the noise and
signal-plus-noise distributions appropriate to probability of error measure-

ment and threshold determination (i.e., the tails of the distributions)

are formed. What remains to be seen is how it compares to optimum
parametric detection in various communication systems, and also how

it compares to other nonparametric schemes., It should again be

stressed that the reason why it should perform nearly as well as parametric
systems, and also possibly better than other noni)arametric systems, is
that it uses the amplitude information of the received samples as opposed

to rank or other more qualitative information.

Finally, it should be pointed out that there are other ways to estimate
probability functions besides using Gumbel' s theory. However, these
alternate methods have drawbacks to them which are eliminated by using
EVT .

One such method is to construct bar graph-type estimates of the

s . . . 1.20 . L 21
probability density function, commonly called histograms.

However, histograms are only accurate around the center of the distri-

bution, not around the tails, and in any communication system with low
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error rates, as stated above, the tails are the most important part
of the distribution. Also, histograms are not unique, since they depend
upon the size of the amplitude windows that are used.

Another approach would he to use either empirical distribution

functions, that is, functions G(x) which are defined such that

n
Glx) = = ) Ulx-x,),
1

where x) is the unit step function and X i=l,...n, are the sample

1.22,1. 23 However,

values, or functions of empirical distribution functions.
empirical distribution functions are much more difficult to deal with
analytically than is extreme -value theory, and they also have the same

drawback as histograms in that they are most useful in the center of

the distribution, not on the tails,
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CHAPTER 2 - NONPARAMETRIC DETECTION USING EVT

2.1 The EVT Dectector

In this chapter, the object is to detect a low-pass binary signal
in stationary additive noise (the one exception will be when impulse noise
is introduced). In most examples considered here, we will attempt to
decide between noise only or signal-plus-noise (i. e., an on-off system).

In all cases, the apriori probabilities of transmission of the binary signals
will be assumed to be equal.

It was pointed out previously that to estimate a probability of error,
P(¢), we would want n to equal T—"]:(_c) . However, since we do not know
beforehand what probability of error exists, we do not know what value of
n to use. Therefore, a trial-and-error procedure is employed.

Consider first the noise distribution. An initial value of n will be
picked, say e ann samples will be taken and ﬁln will be calculated.
In this scheme, it is not necessary to use the estimate for a - This is
desirable, since u can be estimated much more accurately than a,

At this point, it should be noted that the Nn, samples will be

1In
obtained during a learning period from a controlled noise distribution.
That is, samples will be taken from a time waveform which is known
not to contain signal.

The sample size is then increased from ann to ann, and"ﬁ..Zn is
calculated. For n,h > n e Yy will be greater than U, s ascan be seen
from the definition of u, eq. (1. 3) . This procedure will be repeated,
say, m times, m will be determined is as follows!
Besides the control set of noise samples, we will need another control
set, this time of signal-plus-noise. The same procedure is used on

this control set, except that minimum instead of maximum values are

. . A . . N
used. That is, instead of obtaining an increasing sequence of u's,
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we will now obtain a decreasing sequence of ul' s . The termination

A

point occurs when the two sequences "intersect" (that is, where an 1).

The point of intersection is the threshold of the system, and if the final

sample sizes were Nnrnn and Nn then the estimates of the two types

n°’

of error are

Pfa == , (2.1)
mn
and
A
Pfd = ;1-}— . . (2.2)
. 11

It might be wondered at this point why the expressions for the
threshold and probability of error are different from those obtained in
Chapter 1. Actually, these expressions are a special case of the results
derived there. If, in the results of Chapter 1, uy is set equal to u and

both u, and u_ are set equal to the threshold x and if furthermore, it

1

is noted that for equal apriori probabilities, .fn(xt) = fs +n(xt)’ the results

t ?

of Chapter 1 reduce to the above results. The advantage of using this
special case is that the results here, are, at least theoretically, exact
(i. e., if we could estimate u and W exactly, the threshold and proba-
bilities of error would be exact). This is not true in the more general
case, since, as was pointed out before, the two Taylor series are only
exact at the points u and Uy respectively.

At the start of the procedure, the change from one value of n to
another value can be large. As the two sequences approach each other,
the change in n can be made much smaller, However, since the values
of G‘n and Gl are only estimates of u and ] respectively, and there-

fore not exact, there is no point in changing n by too small an amount.



-23-~

. Finally, if n becomes too large to fit Nn samples in the allotted
learning period, we can always stop at some tolerable value and go back to

the procedure given in Chapter 1, thatis, estimate both the u's and

the a's.
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2.2 Examples
2.2.1 Narrowband FM for high SNR and Gaussian Noise

This is probably the simplest situation, since for high SNR,
the output of a narrowband FM discriminator can be represented as just
a signal in additive gaussian noise. The high SNR and small modulation
index enables one to assume the number of errors that occur because of
spikes can be neglected, 2.1 For this situation, as well as any other
case in which the noise has a symmetric density and the signal-plus-noise
distribution is just a shift in mean of the noise distribution, either the
method of Chapter 1 or the method of this chapter gives theoretically exact
results, as is demonstrated below.

For symmetric distributions, a; = ay for the same number of
samples. Since the signal distribution is just a shift of the noise distri-
bution, and since the a's are not affected by a shift, a, of the noise

density will equal a, of the signal-plus-noise density.

1
Also, for a symmetric density with mean equal to u, u = Zp-un .
If the density is now shifted by an amount A, both u and u will shift
by that amount, Therefore, the relationship between u for the noise

distribution, and u, for the signal distribution,is u = A-un. Hence,

1
from eq. (1.14),

Q

n
y _u1a1+unan+lna—_ u tu ) A-u +u A
t” a +a, - 2 - 2 e

which, of course, is the optimum threshold.
To obtain some feeling as to how well the parameters can be
estimated for a normal density, calculations were made with the aid

of a table of normal random variables with n = 100 and N=10, 2, and 40.

The results are given below in Table (3).
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TABLE (3)

Estimates of u_  and e from N(OQ)‘Density

'N=10 N 20 N=40 Actual Value
Gn 2.133 2.201 2.312 2.33
&ﬁ 2.38 2. 36 2.5 2. 664

2.2.2 On-0Off Systems (Non c'oherent Detection)

If a noncoherent detector is used to detect a constant signal in
additive gaussian noise, the densities at the output of the envelope detcctors
are Rayleigh for noise alone, and Rician for signal-plus-noise.aﬁz That

is, the probability density function ( pdf) for noise alone is

2
-
X 20'2
fn(x) = -0_—-2 e ux) , (2. 3)
and the pdf for signal-plus-noise is
~ S 4
_x 20 20 xA .
fsm®) = 2 e I :z) =) , (2. 4)

where U(x) is the unit step function,
The Rician density might at first seem to present a difficulty,
since the portion of it that interest us is its left-hand tail, which goes to zero
as x , not e” ,xlas is required of exponential-type distributions. If, however,
we are dealing with high SNR , a large portion of the left-hand tail of the
Rician is dominated by an exponential behavior. 2.3 Specifically, for
large SNR, the behavior of the Rician at the threshold will be exponential.
As an example, let us assume we have a Rician pdf. with para-
meters A=8 and o =1, and a Rayleigh pdf with parameter. ¢ =1. The
optimum threshold, for equal apriori probabilities, is then 4. 33 .

Using a " good" value of n= 104, we have u =a = 4. 291 for the Rayleigh,
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and U, = 4, 38 and a = 4. 21 for the Rician. If we insert these values

into the formula for the threshold, egq. (I. 14); we calculate x, = 4, 35,
which is in excellent agreement with the optimum value.

To go to a more realistic situation, using random Rayleigh and Rician

numbers, a system with A = 7,35, ¢ =1, n= 100, and N = 20 was simulated,

Table (4) summarizes the results. Note thatn = 100 is not near Pl or
fa
pl— . Yet the system performs well, showing that the initial estimates

id
can be off and reasonable results can still be expected. Also note that

we are working with a relatively high probability of error (i.e., we are not
very far out on the tails). This is significant because the exponential approxi-
mations, eqs. (1.9) and (1.10), which result from eqs. (1.1) and (1. 2),
become more accurate the further out we are on the tails. In other words,

for lower probabilities of error, we can expect even better results.

TABLE (4)

Comparison of Experimental Results with Optimum Values

Optimum and/or

Variable Actual Value Experimental Result
u 3.04 3.11
n
a 3.04 2. 84
n
uy 5.1 4. 95
a 2.65 3.01
e 4.03 4, 04
P, . 404x1073 . 64x107>
P .33x1073 . 71x1073
fa

If a square law detector had been used instead of an envelope detector,

the two probability distributions would have been as follows:

f(2) =5 %2 (),
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and
£, (2) = = A2 22 (A VZ) U(z)
s+nZ —-2 e o Z Z

As before, for high SNR, the signal-plus-noise distribution is basically an
exponential at the threshold.

As an example, using exact values for u s a,uy, and a » if we again
take A = 8 and n = 104, the optimum threshold is 18. 8 , while the threshold

predicted by eq. (1.14) is 18. 5.

2.2.3 On-On-System

Consider an FSK system which transmits either w + AO or mO-AO .
The signals are one of two orthogonal waveforms. The received signal will
be the difference between the outputs of the two square-law detectors in

Fig. (2.1). The input noise is white and gaussian.

MF| Sq. Law Det. Z,
_ O x
MF 2 Sq. Law Det. Zp

Binary FSK Dectector

Figure (2.1)
In this type of system, the threshold is always zero, so that the only

estimate required is that of the probability of error. To see whether
Gumbel' s theory applies, we need the density at the output. This density
is basically the convolution of the densities of zy and Z, s the outputs of the
two square law detectars. Assume signal one was sent. The density of

2

zy is given by eq. (2.4), and the density of z, is given by eq. (2.3).
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Therefore,
00
f(x) = f fl(z-x) fa(z) dz
-00 2
1 _(z-x _A -2/ 2
= 7 [ e Wz-x) e Z e I (AJZ) Ulz) dz
-
fo o} 2
= %- ex/2 f e ? e'A /2 IO(AJ'E) dz , (2. 5)
a
X x>0
where a = { .
0 x< 0

2
Making the change of variable z = Y—Z— , we obtain

A
f(x) = oX/2 f Ye'y I(Y‘J F) e 2 d (2. 6)
Ja

which can be integrated to yield

2 —_—
L ed7% & qu/ iz, 47 x>0
flx) = N , (2.7)
-;— e“A /4 e x< 0
2.2
(BgEe) 2.4,2.5

where Q(a, b) = f x e Io(a.x) dx is Marcum's Q-function.

By noting that Q(a, 0)=1, and by again dealing with a large SNR (so
that A2/4>> x for x near zero), it can be seen that in the vicinity of the
threshold x, = 0, the density of x behaves as an exponential.

If both signals are of equal strength, the two types of errors will
be the same. Also, since we already know the threshold, only one learning
sequence of Qs is necessary, and this sequence can stop whenever the value

of §§ becomes zero or close enough to zero to give the required accuracy.
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2.2.4 Impulse noise

When impulse noise is present, as in telephone lines, detection
becomes much more difficult. This is because impulse noise is nonstationary
and therefore difficult to model, and also because it is not always present
(that is, it is not continuous in time). 2.6,2.7,2.8

* The problem of finding a good representative model will simply
be ignored. The model used for a single impulse will be a mathematical
delta function with random energy and a random time delay.

The second problem will be resolved by using two different thresholds,
The first threshold will correspond to an impulse (or impulses) being absent
during the bit interval, and the second threshold will be used when impulses
are present,

The presence or absence of an impulse will be determined at the
input of the system, not the output. This is because impulses at the input
can usually be recognized on sight, whereas once they have been passed
through a detection system, they basically act the same way a signal does,
as an increase in the mean of the distribution (or, equivalently, as an
increase in the DC component of the time waveform).

Picking the first threshold (without impulses) will be done as before.
It must be remembered, however, that during the learning periods for noise
and signal-plus-noise, only those samples should be used where an impulse
did not occur.

Picking the second threshold is much more difficult. We now need
two additional learning periods, one with " regular" (say gaussian) noise
plus impulse noise, and one with signai-plus-" regular'' noise plus impulse
noise. However, this is not the difficulty. The trouble is that we do not

know the height of any impulse that occurs, plus we do not know how many

will occur in a given bit interval. We could probably find
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some distribution for both the energy and the number of impulses in a given
interval of time; however, due to the nonstationarity of impulse noise, these
might not be meaningful. Therefore, what will be done will be to choose
some average height and some average number of pulses per interval,
based on information received during the learning period. In
effect, what we are doing is simply shifting the first threshold upward by
some ''reasonable' amount.

More than two thresholds could be used, but for the sake of simplicity,
we will use only two,

The specific system to be analyzed is given in Fig. (2.2). Itis the
same on-off system that was previously discussed, except that now, impulse
noise has been added to the gaussian noise.

y(t)
x (t) MF Env. Det. f—-2(1)

On-Off Detector

Figure (2.2)

x(t) = Asin (0t +0) + ng(t) + B §[t-(n-1+k)T] (2. 8)

for (n-1) T< t £ nT and 0 < k < 1, and where @,k and B are random
variables,

The fact that only one impulse was used instead of a train of impulses
does not lessen the generality of the exampie, because once the impulse goes
through the matched filter, it hecomes, as mentioned previously,just an
increase in DC value, Therefore, putting one impulse in of unknown height
is effectively the same as putting more than ;me impulse in, the sum of

whose heights add up to the first one.
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The output of the matched filter (matched to sin wt), is

y(t) = u(t) sin{wt+e) - v(t) cos (wt+ @), where

T
u(T) = ‘({ ng( 1) cos (wr+0)dr + B cos(w (n-14+k)T + ¢ ) = Ng-}- Nimpulse,
and
T
. _ AT . .

v(T) = 6+ f ng (t) sinfwt + 8)dr + B sin(w(n-1+k)T+8€)

0

1 signal present
=§2—T6+N’+N'. ulse 6:{ .-
g lmpuise . 0 signal absent

Therefore, the output of the envelope detector will, in either case,

be Rician distributed. If signal is present, it willhave a spectral component
AT .

5 + impulse * and if signal is absent, it will have a spectral component

of Nimpulse )

We have shown that for high SNR, the left-hand tail of a Rician be-
haves as an exponential near the threshold, and since the right-hand tail
behaves as an exponential, we are justified in using Gumbel' s theory.

Consequently, the first threshold we would use, i.e., the threshold
when impulses are not present, would be found exactly as in the example
on on-off systems in Section. 2.2.2.

The threshold when impulses are present would be that determined

by two Rician densities, with both spectral components being based

upon some average value of B.
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2.3 Comparison with Rank Test

The rank test is a nonparametric testz' 9 which has been frequently
used as the basis for a nonparametric detector. The test works as follows:
A learning period is available during which noise samples are taken. These
samples form a control set. A set of unknown samples are then taken, all
of which come from the same density, and are interordered with the control
set such that the smallest sample is first and the largest sample is last.
Each sample is now given a rank equal to its ordering position (i.e., the
smallest sample has rank = 1, the second smallest has rank = 2, etc. ).

After this has been done, the ranks of the unknown
samples are added together, and if this sum is greater than a predetermined
threshold, it is decided that signal is present.

The intuitive justification for this method is that if signal is absent,
both the control set of samples and the received set of samples are from
the same distribution, namely the noise distribution, and therefore they
should order amongst each other fairly uniformly.

On the other hand, if signal is present, the unknown set should be
shifted to the right due to its higher mean, and therefore the ranks in this
case should be higher than the ranks in the first case,.

The rank statistic has been proven to be asymptotically normal

2.10,2.11 Since we need both

under both signal and no signal conditions.
densities in order to evaluate the system, their means and variances will
now be computed.

Let the control set of noise samples consist of n x's, and let the
unknown set consist of m y's . The x's will be assumed to come from an
N(0, 1) distribution, and the y's from an N(A, 1) distril;gtion.

Let T be the statistic we seek, Thatis, T = Z T where r is

i=1
the rank of the ith y.
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Define a new statistic W equal to the total number of x's that are
. .
less than y's . For example, if we have the sequence X)X, V) X3V, V3 Xy
W would equal 8, since there are two x's less than Yl , and three x's less
t .
han Y, and V3
We will first compute the mean and variance of W, and then use them

to obtain the mean and variance of T .,

Lets.,.= x. -w,, Then s,. has an N(-A, 2) density. Therefore,
ij 1 j 1)
P . = - .= . =
r(xi < }3) Pr(xi yJ siJ <0)
2
0 -(s..+A 4 A/ 2 2
f 1 e(1J )/ds..zl f/ e-r/zdrch(—é-).
-0 J/4mn 1) 2w -00 2
1 x, <y
Let =z ={ ! J Then W = zg: -
0 X. >V 1, ] )

This yields

= -é. - -é- = —-A;
E(Zij) = lcp(ﬁ) +01 o N = o(=).,

VIS

E(z)) = w(—%) ,

and therefore

A
(z..) = o(=) [1- o(—=]
var(z,, cpﬁ ® 5
Similarly,
n
‘ A
E(W)= E ] o= (—)
L Jfl - _
and n m m nm a
var(W) = cov (% JZ Zi s Z, 12{, th) = ; %/ }Z; % cov (zij’ th)'

To obtain the cov(zij, note that

zhk) H
= ] Pr [any other combinatior

E(zij zhk) =1x Pr[(xi < yj), (x),< yk)j + 0 x Pr [any other co tion)
= Pr[(xi < yj), (xh < yk)] .

To calculate this quantity, which changes with different combinations
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of subscripts, there are four possible cases which must be considered.

(1) For i= h, and j=k, P, = cp(fg*a .A

(2) Fori # h, and j # k, Pzch?.(_

N

(3) Fori=handj# k, P_ = Pr[xi < min (yJ., yk)] .

3
(4) Fori# handj = k, P4 = Pr[max (xi, xh) <yj] .

Let us look at case (3). Let s = m1n(yJ yk) Then
F(s)=1-[Pr(y > s)] =1- [l-cp(s-A)] , Or

1 -(s-A) /2 ]

S
Jzn

£(s) = 2[1-p(s-A)]

This yields
(0 0]

(s 0]
Px(x, < s)a.-:foofxi(xi)dxii £ (s)ds =

i

jmf (x)dx1 2[1-cp(s-A)_'ldcp(s-A)

X.
1

© ® e o) 2
-f f(x.) d x.[l-cp(s-A)]‘2 . f [1---q)(xi-A)]2 e ™ /2 dx, = P3..

EAE . fzr e

1

To calculate P4» we must compute the probability Pr [max(xi, xh) < yj].
The derivation is very similar to the above one and will not be given.

The end result is that P4 = P3 . Therefore, we have

A . .
ol =) [1-g-£)]  ish, j=k
Ve T g

cov(z r zhk)

2°, A i=h, j#k or
P,-0 (./’z' ifh, jak
Finally,
n %‘? nm
var(W) = ), ), L) cov (25 i =
ij hx

J—) [1-cp(r 3] mn +[P o) (TE—)][nm(m -1) # mn(n-1)].

P3 cannot be evaluated in closed form and is done numerically for

each individual case.
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It now remains to express T interms of W and to obtain its
mean and variance.

Let r, be the rank of the ithy . This means there are ri-i x's
less than vy - This can be seen by noting that, if r, is the rank of Vs
there are ri-l total samples less than Vo and i-1 y's less than Yo thus
leaving ri-l-(i-l) = ri-i x's less than y; -

Now we sum r,~i from1lto m .
i

]

m
> (r,-i) T - E(zr.rl*‘_l) ,
i=1

since
m
Z T, QT
i=1 !

But
=
L (r.-i) = W,
i=1

so we have

T=w+2%5n—+l): (2. 9)

It now follows that

_ m(m+l) - m(m+l) A
E(T) =—s—= +EW) = 5 + mnep (J_.)J, (2.10)
fnd 2
var(T) = var(Ww) - (2.11)
For noise only, A = 0, and the above results reduce to
B(T) = 2R, mn midmi) (2.12)
and
mn 1 1 3 5 1oy
var(T) = 54— + > [nm(m#n-2)] = Tz-[nm(m+n+ll]. (2.13)

When using these results, it must be remembered that they are only

true asymptotically, that is, for n and m very large,
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Beforewe can compare this method of detection with the EVT
detector proposed in Chapter 1, the differences between the two techniques
must be recognized and reconciled in some way in order to come up with
a meaningful comparison.

The rank test starts out with n control samples of noise, and then
makes a decision of noise or signal on the basis of m test samples. On
the other hand, the method based upon EVT uses Nnn control noise samples
and Nn, control signal-plus-noise samples, but then makes its decision
on just one test sample. Furtheremore, note that the rank test has to be
used as a radar-type detector, that is, a detector which picks a threshold
which satisfies one type of error requirement, say the false alarm proba-

2.12 This

bility, and accepts the resulting false dismissal error,
is because the optimum threshold comes from a likelihood-ratio, whereas
the rank test was obtained independently of the likelihood-ratio . In con-
trast, one of the main objects of the method proposed here is to estimate
the optimum threshold.

Therefore, the following method of comparison will be used: The
learning period of the rank test will consist of n = N(nn+n1), the number
of samples in both learning periods of the EVT test. However, to compensate
for the fact that the rank test uses m test samples,as opposed to only one
for the EVT test, the noise power of the rank detector will be increased by
a factor of m (i. e., the voltage SNR of the rank test will be decreased by

a factor of from that of the EVT test). This is reasonable, because

/&

in order to take m times as many independent samples in the same one-
bit interval, the bandwidth of the system using the rank test must be
increased by a factor of m . But this is just another way of saying that

the noise power is increased by a factor of m .
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Finally, to avoid the problem of the two systems arriving at thresholds
in different manners, a range of thresholds will be determined for the
EVT detector (the range being chosen such that X, lies within ¥10%of u
with a confidence coefficient of greater than 99%), and the rank detector
will be given the same false alarm probability at each threshold. The
corresponding false dimissal probabilities of the two will be compared.

3. N = 100,

Specifically, for the EVT test, we will take n =mn = 10
and a voltage SNR = 6 . This means that for the rank test, n = 2 x 105 .
Also for the rank test, we will take m = 100, which means the SNR for

it equals L = .6.
/m
The values picked for the rank test results in o —A) = o -'—-é-)
JZ J2

= o(. 425) = . 664, and P3 = ,51. Table (5) summarizes the results.

TABLE (5)

Comparison of Rank Test with EVT Test

EVT Threshold RankThreshold -l-jfa— —szd (rank) —Pfd(w
2.78 (=. 9u ) 1L61x10°  2.72x107°  8.2x10"% 6. 4a1x107%
3.09 (= u) 11.79x 10  1.01x1073 2.42 x1003 1.81x1073

6 3.37x107¢ 6.39x10° 4. 66x10™>

3.4 = (L1u) 11. 96 x 10

It can be seen that while the EVT detector gives a smaller false
dismissal probability, the difference is not great. The significant result
is a considerable savings in receiver complexity. This results because
the rank detector must, for every decision, rank the 100 test samples
amongst the 2 x 105 learning samples and sum _ their ranks. The EVT
detector merely compares the amplitude of a single sample with the

threshold.
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Finally, it might be argued that this result was just a coincidence
(i. e., given different values of n, m, and the rank SNR, the rank test
might outperform the EVT test). This however, can be shown to be impossible,
The reason is as follows: Consider what the optimum Neyman-Pearson de-
tector would do if it knew the noise was gaussian. It would, after forming
the likelihood-ratio and choosing the false alarm probability it wanted,
decide a signal was present each time the threshold corresponding to that
specific false alarm probability was exceeded. That is, the optimum Neyman-
Pearson detector, in this situation,would perform precisely as the EVT de-

2.1 3’ for

tector. Therefore, by definition of a Neyman-Pearson detector,
that false alarm rate, neither the rank detector nor any other detector
working under the same conditions could do better than the EVT detector.
At best, any other detector would do as well.

Summarizing, we can now see two advantages of the EVT test. One,

the ease of using it after the learning period is over, and two, the possibility

of actually doing as well as the optimum parametric detector.
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CHAPTER 3 - FADING

3.1 Fixed Threshold

In this chapter, the detection of a fading signal will be considered
in two ways. The first considers the use of a constant threshold, and
the second considers an adaptive detector. The fading is assumed to be
slow with respect to bit duration, and is assumed to be governed by a

3.1,3.2 A Rician density was chosen

Rician probability distribution.
rather than the more common Rayleigh density in order to prevent very
large fades. The reason for this, is that since we are using

EVT, we want to apply it on the tails of the densities, and this will not

be the case for deep fades.

The method used in this first section is only valid when we are
dealing with a signal whose amplitude does not fluctuate greatly. This
restriction is relaxed in Section 3.2. Because the variance is small,
the probability density is approximated by a gaussian density. Specifically,
we assume the fading has an amlzalitude distribution given by

(A-A))

1 20

fA(A) = € ! ’ (?-l)

A

where Ao is the spectral component of the fade. If we assume the density
of signal-plus-noise remains functionally the same (undistorted) for any
value of A, the only change being a shift in mean, the parameter ay will
remain constant and the parameter Uy will vary in the same way as the
mean. This can be seen from the defining equations (1, 5) and (1. 6) for
u, and ay by replacing F{x) with F(x-b), b being an arbitrary shift.

Therefore, if eq. (3.1) is the density of A, the density of Uy is



(u; -u )2
_ 1 o
1 20
e R (3.2)

ful(ul) =

J2mo

where u is the value of u, that corresponds to A = Ao' Averaging our

estimate of the false dismissal probability over the fade gives

(uy-u )@
a,{x,-u,) -—1_0_.._
(0¢) 1'"'t 71 2
- e 1 20
<F, > = | e du . (3. 3)
n
-0 ,/Zmr
ay(x-ug)

Note that while the expression is an approximation which

n
is only valid for certain values of u,, we are averaging it over all possible
values. This is the reason why it was important to have the possible
fading amplitudes confined to a limited region. In other words, this is
why we chose a Rician fading pdf with a large Ao and small ¢ instead of
Rayleigh fading. Also note that the false alarm estimate does not have

to be averaged, since the noise does not fade.

Equation (3.3) can be integrated by combining the exponentials

and completing the square in the exponent. The result is

2
a o2
a,(x.-u ) ——1——2———
_ 1 1'"t "o .
<Pfd> = —n—— e e (3.4)

Next, we must establish the region of validity of eq. (3.4). We
originally found where EVT was applicable by considering the Taylor
series derivation. However, now that we have integrated over one of
the parameters, it is no longer obvious where Gumbel's theory should
apply.

To solve this problem, we first write that G(xt), the true average

false dismissal probability,is

QO
G(x,) = f_oo P,(A) £,(A) dA . (3. 5)
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Next, we set eq. (3.4) equal to eq. (3.5):

2 2
a; @
1 o xe-ug) 12
? e = G(Xt) . (3.6)
Solving, we obtain
a, o 2
_ 1 1
u - X = 5 - en In [ n G(Xt)] . (3.7)

However, G(Xt) is unknown, so we must use some approximation to obtain
the desired region, As a first approximation, let us assume that

L In [nG(x )] is negligable, thus leaving
ay t

o
u - X, ——— . (3.8)

As a numerical example, consider a system operating in the

pPresence of additive gaussian noise., The average false dismissal proba-

bility is then 2
2 (A-AO)
© ¥ ALY T2
S olx,-A) £,(4) aa = f ft -1— e 2 ! e 2" gydA.
-00 o /2 v 2o
(32.9)

This can be evaluated by making the following change of variables:

y=x+A+xt.

Equation (3. 9) then s1mp11f1es to

(x+xt) _(A A)
f f- 1 T 1 20 2
— € — e dxdA =
00/_ va2mo’

Pr(x <-A) = Pr(x+A=12<0)
Since x = N (-xt, 1), and A = N(Ao, 0'2), we have

_ 2
-N(Ao-xt, 1+0")

Therefore,
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xt-A A -x

Pr(z< 0) = g (F===) = 1 - (—=s=) . (3.10)
i ? ./1+0'2 P J1+ o

The results of the comparison are given in Table (6), computed

4

with a;, = 3,944 and n = 10",

1
Table (6)
Range of Validity of Fading Approximation
2
a; o
o —— = A Aexp A(nG(xt) )
1 1.68 1-2 .97 - 5.6
JZ 3. 36 3-5 1.43 x 1072 - , 58
2 6.72 8-11 1.96 x 107% = . 133 x 1072

In this table, Aexp is the experimental range of differences be-
tween ug and x, over which eq (3.4) was a " reasonable" estimate of
eq. (3.10). " Reasonable" here means within a factor of 4 or 5.

A[nG(xt)] is the corresponding range in the product nG(xt), which
was implicitely assumed to be approximately unity in the derivation lead-
ing to eq. (3.8). It can be seen that this approximation can be somewhat
violated without significantly affecting the results. We will improve
upon this result later.

At this point, the question that must be resolved is how do we

estimate the parameters U, aq, and ¢ ? Barricelli proposed the follow-

ing method when he was using EVT to study climatic variations. 3.3

Consider again the double exponential distribution of Gumbel,

If we average that density over the fade, we obtain

al(x—ul) (ul-u0)2
o a)(x-u;)-e 1 262
Hx)= [ aje e < . (3.11)

-00 Jena
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But this can be written as

+alu1
+c11u1 -e
H(x) = 0‘1 e * f (ul) , (3.12)

that is, a convolution between a double exponential and the density of u

1°
- aZ
From Section 1.3, we know the mean of the density f(z) = e? ™€
2
is vy, while its variance is _1r6__ . Since the mean and variance of a den-

sity which is obtained by convolving two other densities is just the sum
of the individual means and sum of the individual variances of the two

convolved densities, we have

E(x)= 42— +u ¥ (3.13)
a o
and 2
var (x) = —TT-—Z + 0'2 . (3.14)
60,l :

Therefore, if we again replace the population mean and population
variance by the corresponding sample values, again computed from the N

minima of n samples, we obtain

.. = X_ 44 , (3.15)
min A [o] ?
0.1 ’
and.
2 A 2
var (x_ . )= —— +9%° . (3.16)
min
6482
1

Since we now have three unknowns and two equations, we need one more
equation. This equation can be obtained by measuring the fade separately.
That is, since the variance of u, is the same as the variance of A, we do
not have to compute ¢ 2 from extereme-values. Rather, we can compute
the mean of each set of n samples,and then compute the variance of those
means. Since we are assuming slow fading, (fading which is approximately

constant over n bits),this will be a reasonable estimate of ¢ 2.
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Finally, we have to determine how we are going to choose n and
X, We had some idea of the region where eq. (3.4) is valid by using the
approximation leading to eq. (3.8). However, in order to estimate the
initial density parameters (that is, the parameters of the density before

it is averaged over the fade), n must be in the vicinity of 1/ F(x Once

o
we average over the fade, our final probability of error G(xt) will be
considerably larger than F(Xt)’ and therefore we know that the assump-
tion nG(xt)zl will always be violated. Keeping this in mind, the actual
detection procedure will be as follows: pick an average false dismissal
probability G(Xt)’ pick a value of n reasonably larger than l/G(xt) (say

by a factor of 100), and compute X, from eq. (3.7):

2
a, o 1

X, =1 - =———— ~ — In nG(x)].
2 o9 t

A
At this value of x,» compute Pfa » and then calculate the total probability
of error:

Ble)= 5 [P, +Glx)] »

which is valid for equal apriori probabilities.

Having done this, we will now pick another G(Xt) and repeat the
entire procedure., We will continue this over a wide range of xt' s and
finally select that X, which corresponds to the smallest value of the esti-
mate of the minimum probability of error, lg(s).

It must be pointed out, however, that the accuracy of the value of
x_decreases as the variance of the fade increases. That is why this

t

method is valid for signals which only fade over a small range of values,
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3.2 Adaptive Detection

3.2.1 Adaptive EVT Detector

In order to design an adaptive detector using EVT, we must find
a way to track the fade by means of changing Uy since that is the only
parameter that is changing with time. (Recall that the density of the
signal-plus-noise is assumed to be undistorted by the fade, thus keeping
ay constant, and u, and a are constant since the noise does not fade).

The first change that must be made is in the learning period. We
will assume, as in the previous section, that the fade is constant over n
bits, and that we want Nn total bits in the learning period. However,
whereas previously we were able to use N minimum values to estimate Uy
and a;» we can not do that now because the N minima all come from dif-
ferent distributions,

We can, however, transform all the minima from different densities
into new " minima" from the same distribution.

To see this, consider the following: the only differences in the den-
sities from which the minima originally come are their mean values, due
of course, to the assumption of the fade not causing any distortion in the
densities. Now let us examine two densities which differ by only a shift,
Consider fx(x) and fy(y) = fx(x - A), I cpxl(x) and CDY (x) are the den-

1
sities of the respective minimum values, we have

nfl-F (o] @i, (3.17)

S
»
p—t
X
n

and

3
:5:
i

n[l-F ()] 1)y ) -
n[l - F(x - A (n-1) f(x-4) = @xl (x-A). (3.18)

In other words, if two densities differ only by a shift, the densities of
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their minima differ by that same shift,

Therefore, if we have N minima from N densities having means
Al’ IRER AN’ and we want to compute Gumbel's parameters which
correspond to, say, the Nth density, we can do so by taking the N-1 re-
maining minima and adding to them the difference between AN and the
mean corresponding to the minimum we are changing. For example,
if the ith minimum has a mean equal to Ai’ the quantity xi’1= Xil+ (AN-Ai)

will be distributed in the same way as the minimum value corresponding to

the N density, namely x .
We are now in a positioln to discuss the detection procedure. The
parameters corresponding to the last (most recent) value of the fade will
be calculated using the adjusted minimum values as discussed above. We
will then use a slightly modified version of the usual method for estimating
uy and a;. This modification, which only involves the value of n that we
use, will also apply when u, and a, are estimated. Previously, we were
very careful about the value of n we used. Now, because the error prob-
abilities Will constantly change, we will arbitrarily pick a value of n such
that _111_ is somewhere in the vicinity of the error probabilities we expect.
Also, with respect to modifying the minimum values, since we do not

know the actual values of the N means Al' .. A, we will use the sample

N

means of each set of n bits to estimate the true means.

Having the four parameters {\11, /3.1, Gn, and an, we will use eq. (1.14)
to estimate the threshold, and then use this threshold until we have de-
tected n bits as signal. Of these n bits, some will be wrong, but for low
probability of error, not many. We will then compute the mean of the

new samples, use this as the new reference mean, and transform the

original N minima of the learning period in precisely the same way as
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was done in the learning period. Having a new value for Gl (a new

value for 6‘,1 is not necessary), we will obtain a new threshold with which
to detect until n more bits are decided as containing signal. . This process
will then be continually repeated,

There is one point that should be noted, however, and that is that we
have changed one of our original assumptions, Whereas we originally
assumed the fade was constant over n consecutive bits, now we are as-
suming the fade is constant over n bits which are detected as signal.

This period will be longer than the original period, because for equal
apriori probabilities of transmission, signal bits will only be transmitted
half the time. Therefore, we are now assuming the fade remains constant

over approximately 2n consecutive bits.

3.2.2 Conﬁdence Intervals

Finding confidence intervals in the fading case is more difficult
than in the case of a constant signal, but nevertheless, theoretical results
can be obtained. It was previously shown, in the non-fading case, that
all the estimates were asymptotically normal. It will now be shown that
this result is valid in the fading case, except that these asymptotic re-
sults have to be averaged over another asymptotically normal density.

To show this, consider again the way the N minimum samples are being

altered. The jth minimum sample, xj min ' Will become Zj where

1 9 s
- 1 .
T YminTF L Nt E 4 NR =iz N

and where the two summations are the estimates of the means of the jth
fading amplitude of the learning period, and of the reference fading am-

plitude respectively.
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There are two situations to consider. The first is the case when
N = R, which is the learning period; the second is when N > R, where
the detector is in the process of adapting its threshold.

In the first case, it will be noticed that the two summations can-
celfor j = N = R. This is because the last minimum is a perfect refer-
ence in the learning period without any adjustment of its mean. On the
other hand, for all j <N -1, the term-%l- i XiR acts as a constant.

It is also correlated to ZN since 2y T XN ;nin is the minimum of the
samples composing the sum Z X.p (recall R = N)., Therefore, if we assume
that Z X;g = const, and neglect the last minimum NG the remaining N-1
adjusted minima will all be independent. They are also identically distri-
buted, as can be seen by recalling that the signal-plus-noise density was
assumed not to become distorted as the signal faded. Therefore, the only
difference between any of the x's is their mean . But the z's were
formed specifically to adjust for this difference in means, so that the z's
end up all having the same distribution. This, of course, assumes that
E[E xiR:Iv = AR, which will not be the case if there are errors present,
However, as mentioned above, for low error rates, very few bits will

be in error, and they will be ignored. If greater accuracy is desired,

the methods of Chapter 4 can be used.

Because of this simplification, when we compute the confidence
intervals for the learning period, we will make our proofs significantly
easier if we only use the first N - 1 minima, and disregard the last one,

This is not necessary when the detector is out of the learning
X., acts as a constant for

iR

all N adjusted minima, and all N zj‘ s have the same density.

period, because, with R> N, the sum -

kgt

Therefore, in the derivation that follows, N minima will be used,
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but it should be changed to N - 1 if the results are used for the learning

period.
Because the variables z, are independent and identically distri-
n
buted, given that _lﬂ Z Xp = const, we are able to use the previous re-
1

sults given in Chapter 1, and then average over the distribution of

n

-Il; xR’ which will be asymptotically normal. However, to use our
i=1

previous results, we need the first four central moments of the z,'s.

J n
- L
X, . == )X...
jmin n ij
1

This is a sum of dependent random variables, since the last n terms are

To this end, consider the non-constant part of zj,

all correlated with xj min’ If we assume the Xij' s have means and vari-

ances equal to nj and crjz respectively, then

1 ¥ 1 4
E[Zj|ﬁ ; xiR=const] = ulj-glj—-nj%- H;XiR ’
and : g >
1 n 2 T, 2 n
- = _T 3 .=
var[zjl Y Z:/ xR < const] = (;—2- + = = iz 1c0v (xj min’ Xij)'

1j -
/

As is usually the case in calculating confidence intervals, we need
the actual values of the unknown parameters, namely the nj' s, crj' S,
etc, In fact, we will see below that we need the actual densities.

In order to calculate the covariances, we need

% -E(x (x..).

cov (x *i5) = E(xjmin' ij j,min’) E ij

jmin’ Tij
Since x,. is any sample from the n samples from which x, . is the
1 jmin
minimum, we can calculate the cov (x, . , %..) as follows:
jmin’ 1]

Let Ylj' . 'Ynj be the ordered set of Xij’ with Ylj the smallest

and an the largest. Then

n
cov (xj,min’xij‘);E: : cov [xj min’ ijlxij = ij] Pr [xij = ij] .

However, the probability that xij is the kth order statistic is 'r}f .
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Therefore,

o R o)

cov (x,

n
emint 55 T 5 0[S Vil = ]

The covariances in the above sum can be calcuylated, at least in

theory, by considering the joint density of the kth order statistic with the

first order statistic., In general, the density of the ith and jth order
T (374)
statistics is given by

£, %) = n. F(xi)i'l [Fix,

- F(x. j_i-lF 'n'jf ) )
(£-1)t G-i-D)t (a-)} j-Fe)] CARERTENE

for - o < xi<xj<oo.

We can similarly calculate the third and forth central moments,
and therefore use all the results arrived at previously. That is, since
the confidence intervals for functions of the sample mean and sample
variance of independent identically distributed random variables only
depend upon the first four central moments of the distribution, which we
can (in principle) calculate, we can (in principle), calculate the desiréd
confidence intervals,

Finally, we must remember that all these results are conditioned
on L E *.p = const, and therefore our answer has to be averaged over

n

its distribution, which, as pointed out above, is asymptotically normal.

3.2.3 Computer Simulated Results

In order to obtain some numerical verification for this method,
two computer simulations were run. The system simulated was an on-
off system with a matched filter and an envelope detector. The signal
was a carrier whose amplitude was fading, and the noise was gaussian.
Therefore, at the output of the system, the density of the noise was

Rayleigh (¢ = 1), while the density of signal-plus-noise was Rician (¢ = 1)
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with time varying parameter A(t).

The mean value of the fade in the first simulation was 5, and the
mean value was 6 in the second simulation. In both cases, n = 50 and
N = 20.

Note that this is not the case we analyzed, since we assumed the
signal-plus -noise density remains undistorted as the signal fades, and
this is not true of a Rician density., We will see however, that the system
will nevertheless perform well, indicating, as has been the case in pre-
vious examples, that the assumptions are not critical.

The slow fade was simulated by a waveform which was constant
over n signal decisions, and then the next fade was correlated to the ten
previous values of the fade using a correlation coefficient of approximately
90% between any two adjacent fading levels,

The results of the first simulation are shown in Figs. (3.1) and
(3.2). Figure (3.1) illustrates how this system tracks the fade, and com-
pares this result with an illustration of how the optimum system would track
the fade. It can be seen that even though the fade becomes quite deep,
the system still performs well, and still recovers when the amplitude
increases,

Figure (3. 2) compares the number of errors this system makes
with the number of errors the optimum system would make. In both
figures, it should be noted that the optimum (or parametric) system em-
ployed here is one that knows both the exact values of the reference fade
plus the actual densities of noise and signal-plus-noise. In reading
Fig. (3.2), each horizontal line between two adjacent abscissa values
is the number of errors made between threshold changes.

Also, in both figures, the first abscissa point corresponds to the
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learning period, so that point (2) on the horizontal scale corresponds to
the first threshold adjustment.

Figures (3.3) and (3.4) are the corresponding results of the
second simulation. There is, however, one point to note regarding
Fig. (3.3). Whereas in Fig. (3.1) we obtained the worst results for
deep fades, in Fig., (3.3) we have the worst results when the amplitude
was large (that is, when the signal did not fade deeply). The explanation
is that when the mean of the fading amplitude was changed from 5 to 6,
no corresponding change was made in the value of n. In other words,
when the signal had a large amplitude in the second simulation, the value
of n = 50 was too small to give an accurate approximation to the density

functions at the threshold,
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CHAPTER 4. - DECISION-DIRECTED MEASUREMENTS4‘ 1

4.1 Elimination of Learning Period

In all of the previous examples, the key factor which enabled us to
detect signals, in noise having an unknown probability density, was the
learning period, during which time the appropriate density functions
were estimated, Because of the time consumed by the learning period,
it is worthwhile to consider a scheme which does not require such a
learning period.

In this new scheme, it will be necessary for the detector to esti-
mate Gumbel's parameters (after an appropriate time delay) on the basis
of its own decisions, some of which will be wrong. That is, we will
consider a detector which makes its estimates of the parameters without
the benefit of knowing that those bits which were detected as noise are,
in fact, noise, and that those bits detected as signal-plus-noise do, in fact,
contain signal,

The first thing we must do is to specify aninitialthreshold with
which to begin detecting. We have to be careful here, because the estimates
we make of Gumbel's parameters will be obtained from the samples we
detect with this initial threshold. That is, no matter what threshold we
pick (including the optimum threshold) we will make a number of incorrect
decisions, and these incorrect decisions will affect our estimates, Ob-
viously then, if we initially pick a very bad threshold, we will get worse
estimates then if the threshold was better,

Since we are starting with no more information than that the den-
sities considered have exponential-type tails, we certainly cannot expect
to initially arrive at any optimum threshold. However, we can come up

with a reasonable threshold by taking, say s samples, where s will be more
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than 2nN, and computing the mean of those s samples. That this is a
reasonable value to pick as a threshold can be seen as follows: Since

we are dealing with large SNR, the optimum threshold will be somewhere
out on the tails of both distributions. Likewise, if we take the average
of the means of the two densities, this will also lie on the tails of both
distributions. A specific example is shown in Figure (4.1). It can be
seen that the two thresholds are reasonably close, and that starting with
almost no knowledge whatsoever, the average of the population means

makes a good initial threshold.

(xf)opfimum = 341

A+ A2
2

= 3.625

Ap=125 341} A6

Sample Mean as Threshold Estimate

Figure (4.1)

The densities in Fig. (4.1) are Rayleigh with parameter ¢ = 1, and
Rician with parameters ¢ = 1 and A = 6,

There is stillone more problem. If we agree to use the average
of the two means, thebest way to estimate it would be by the average of
the sample means, However, since in our initial s samples, we do not
know how many of them came from each density, we cannot estimate the
individual sample means.

What we can do, though, is compute the overall mean of the s
samples. This will be a reasonable estimate of the average of the indivi-

dual means if the apriori probabilities of transmission are equal,
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Having decided then on an initial threshold, the next step will be
to go back and detect the s samples we have accumulated, This is accom-
plished by calling all samples below the threshold, noise, and all those
above the threshold, signal (plus noise).

It can now be seen how large s must be. Since we need nN samples
to estimate u; and a

1 1’

must, once we start detecting the s samples, make at least nN noise

and the same number to estimate u and a we

decisions, and nN signal decisions. Because of the equal apriori proba-
bilities, s will be approximately 2nN, but, except in an unusual case, will
have to be larger.

Note that we have not yet decided how we are going to pick n.
That the value of n we choose can be critical can be seen as follows: Con-
sider our method for estimating the parameters. It is based on the sample
meax; and sample standard deviation of the maximum or minimum values,
But once we determine, say, the maximum of n samples from samples
which were below some threshold, we are automatically bounding the
value that the maximum sample can take. Suppose now, that the value of n
chosen corresponds to a value of u which is greater than the threshold.
This means that the estimate we make of u will have to be wrong. That
is, since the N maxima we are using are all less than the threshold,
their average is certainly less than the threshold. Therefore, since the
estimate of u is this average minus the sample standard deviation times
a positive constant (i.e., minus a positive number), Gn will necessarily
be less than the threshold.

Now assume we choose an n which corresponds to a u less than
the threshold, but "near" it. Since u is near the threshold, at least

some of the maximum values we would obtain if there were no threshold
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will " probably be greater than the threshold. In other words, we will
probably be using values we believe to be maxima from sets of n noise

samples which are either not from the noise distribution (they would then

be samples of the signal-plus-noise distribution which fell below the threshold

and consequently were detected as noise), or from the noise distribution,
but not the largest of n consecutive noise.samples. The latter situation
would arise if either some signal-plus-noise samples were among the n
samples believed to be noise, or if a noise sample larger than the thresh-
old was actually transmitted during the period when the n samples were
collected.

The net affect of this, with respect to the resulting parameter
estimates, is a value of Gn which is approximately equal to the threshold,
and a value of an much larger than the true value a- This can easily be
seen by the following reasoning: Since most or all the N maxima will be
near the threshold, the sample mean of those maxima will be near the
threshold. Also, for the same reason, the sample standard deviation of
the maxima will be much smaller than it should be. Consequently, Gn
will be approximately equal to the sample mean, and Qn, being inversely
proportional to the sample standard deviation, will be much too large.

Therefore, to ensure that most of the maximum wvalues we use
are correct, we pick n so that the corresponding u is quite a bit lower
than the threshold. This, of course; will probably take a trial-and-error
procedure, since we have no idea how to choose n initially,

Since all of the above reasoning applies to the minimum values of

the signal-plus-noise density, the value of 3, should be reasonably larger

1
than the threshold.

At this point, we have just about caught up to ourselves. Having
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detected 2nN of the original s samples, and having estimated Gumbel's
parameters, we can compute a new threshold, use that threshold to
detect the remaining s - 2nN samples, and then start detecting new
samples. As we are detecting incoming bits, we will stop after making
either n signal decisions or n noise decisions, recalculate the appropriate

parameters, and again change our threshold accordingly.

4.2 Confidence Intervals and Computer Simulated Results

In order to obtain confidence intervals, we need the distribution
of the maximum and minimum of sets of n variables which are no longer
all signal-plus -noise samples, or all pure noise samples. The n bits
now contains samples from both distributions, and to find the density
functions of the extreme-values from the combined set, we proceed as
follows:

Let z be an arbitrary sample. If we have n z's which we have
detected to be noise, then, by definition, all the z's will be below the
threshold X

Therefore, to find the distribution of z, we write

Pr[zgx’zixt] Pr[zimin(x,.xt)]

PT[ZS_xlzﬁxt]— Bt [zfxt] - Pr(Zixt)

But,

Pr [z € min (x, xt)] = Pr[z < min (x,)xt)lz = signal] Pr [z = signal]

+ Pr [z £ min (x xt)l z = noise] Pr[z = noise]

{ Flpn® (3) + F(x)(3) x < x,

Fs+n(xt) (%) + Fn(xt) ( %) x > X'c
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Also,’
Pr (= §_xt) = Pr (2 §xt| z = signal) Pr (z = signal)
+ Pr (z <—‘Xt| z = noise) Pr (z = noise)
=F_, () (3)+F_(x) (3).
Therefore,

F (x)+F_ _(x) e

Fn(xt) + Fs+n (Xt)

1 x > X

Pr[z S_xlzf, xt] =

The distribution of zn,the maximum of n z's, is given by

[F‘n(x) +F (%) ]n
x<Xx

= 1:‘n(xt) * 1:‘s+n(Xt)

n

an;(x)z[Pr[zgx|ZSxt]] = t (4.1)

1 x> x

In order to obtain a result in a more useful form, we substitute the

(x)

exponential approximations we have been using for Fn(x) and Fs+n

into the above equation. That is,

n
[ o o,r%(x-u )+ aj(x-u ):I
F_ (x)= - y =TI R X% (4. 2)
z X7 [ e an(xt Hn eal(xt Y ]
n ] - — + =
n n
1 . x > xt
However, we know that
n 4,2
lim [1+ X] = e,
n
n—e o
Therefore, for large n, we have
- -
) [e-an(x-un) ] ul(x -ul)]
e
= < .
Fzﬁ(x) ) o (x-u ) ¥ al(xt'ul)] TER (4. 3)
e—[e B
L 1 x > X,
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Also,

-an(x-un)
a_ € + a

a,(x-u,) ‘
L1 ]Fz (x)[l -U(x-xt)], (4.4)

n

fz v(x) =

n 1

where U(y) is the unit step function.
If we now consider those samples which have been detected as

signal, we must find the density of the minimum of n z's which are all

greater than the threshold, Its cumulative distribution is then given by

Pr[z £x,2>x ] Pr[x

Pr[z_{_x'z_>_..x]= LE t

X
t Pr[z > xt] Pr[zzxt ]

Proceeding as before, we have

$z<x]

Pr[x 52 £x]= Pr[x, <z £ x|z = signal]Pr[z = signal]
+ Pr[xt <z x|z = noise] Pr[z = noise]
’% [Fs+n(x) - Fanl®) + F(x) - Fn(xt)] x 2%
) 0 x < x,
Also,

Pr [ZZ xt]= Pr[z 2 xtlz = signal]Pr[z = signa1]+ Pr [z__>x

=[t - FS_I_n(xt)]é- +fi - Fn(xt)] %

tl Z = noise]Pr[z = noise]

Therefore, we have

(F(x)-F(x)+F (x) - F (x,)
Pr[z{x]z)xt] ={ . B n't s+n stn'"t x>xt
2 - Fn(xt) - Fs+n(xt) » (4. 5)
L 0 x < Xt
and
2-F (x)-F (x)
pe x| e T
2 - Fn(xt) - Fs+n(xt)
1 x <x
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If we now substitute for Fn(x) and Fs+n(x) the exponential approximations,

we obtain

-
-an(x-un) al(x-ul)
1+ < - £ S
1 -Pr[z <x|z >-xt]=< Ii T y a €3 y R (4.7)
- = e m *"%n 1 t ™%
1+ = - = !
n n
L 1 x < X,

Finally, the distribution of z,, the minimum of n z's, is given by

. [e-an(::c-uﬁ) ) eal(x-ul)]

F_(x)=1-|1-Pr|z <x|x2 ={1 - £ > x

z, [ r[z _xlx xt]] [e-an(xt-un) al(xt—ul)] X2 X
e

0 x<xt

(4.8)

1

r

-€

lis

-a_(x-u_) a;(x -u;) )
le(x) =|ae + a, e 1 - le(x{ U(x-xt) . (4. 9)

and the density of z

If we have N sets of n z's detected at a given threshold as noise,
and another N sets of n z's detected at that threshold as signal (plus noise),
we can use all the previous results of Chapter 1 for calculating confidence
intervals, and in determining the values towards which the estimates
converge, since we again have functions of identically distributed random
variables. The only information needed are the values of the first four
central moments. However, because of the difficulty in evaluating the
appropriate integrals, the moments must either be calculated numerically
on a computer, or some approximations made for the integrals so that
closed form results can be obtained.

Tables (7) and (8) summarize the results of two computer simula-
tions, Table (7) was run with a Rician density (A = 6.5, ¢ = 1) for signal

and a Rayleigh density (¢ = 1) for noise, and Table (8) was run with the
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same noise density, but the Rician density had its parameter " A" changed
from A = 6.5to A = 7.0, Both simulations were made with N = 20,

The threshold for Table (7) was X, = 3.86, and the threshold for Table (8)
was x, = 4.1. The column labeled " optimum value" contains the theoret--
ical wvalues corresponding to the extremes of n samples taken with a
learning period (i.e., no incorrect decisions). The column labeled

" asymptotic value" gives the values which resulted from the above analysis

(that is, results obtained from eqs. (4.4) and (4.9) ), and finally, the last

column gives the numerical results from the actual computer simulation.

Table (7)
Parameter Optimum Value Asymptotic Value Simulation Result
u, 4.54 4.58 4.69
ay 2.44 5.72 3.77
u 2.8 2.86 3.0
n
a 2.8 3.06 3,23
n
e 3.64 . 3.91 3,89
Table (8)
Parameter Optimum Vahe Asymptotic Valie Simulation Result
u) 5.04 5.07 5.18
a, 2.48 3.64 3.09
u 2.8 2.84 3.02
n
a 2.8 2. 86 2,77
n
-ox 3.88 4.05 4.14

It should be noted that the results of Chapter 1 only apply to functions
of identically distributed random variables. Thus, the above results are

only valid when all of the samples are detected using a single threshold.
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However, if we recall the detection procedure, after the initial time
delay (when all samples are detected at the same threshold), the new
samples are detected at a different threshold each time either n signal
decisions or n noise decisions are made. Also, in any given set of n
samples, detected as either signal or noise, there will probabily be more
than one threshold used, because while we are in the process of making,
say n signal samples, we are also collecting £ < n noise samples. After
the nth signal decision is made, we change the threshold, and then con-
tinue detecting. It is obvious then, that by the time we make n noise
decisions, we will have used at least two thresholds, since the first £
noise decisions were made with one threshold, and then that threshold was
adjusted at least once before the remaining n - £ noise decisions were
made,

The simplest solution (although most costly in terms of time and
effort) is to redetect all the previous samples each time the threshold is
changed. In other words, instead of only using a given threshold to make
n new signal decisions or n new noise decisions, we can use that threshold
to redetect all the previous samples for which decisions were already made.
If this procedure is used, then eqs. (4.4) and (4. 9) would always be ap-
plicable, and therefore all the results of Chapter 1 would be appropriate.

If the cost of storing and redetecting the old samples is prohibi-
tive, the above analysis can be thought of as an upper-bound to the accuracy
of the estimates. The term "upper bound" is used here only in an intui-
tive sense. The justification for it is that as the threshold estimate im-
proves, fewer errors should be made, and therefore, the parameters
should become closer to what they would be if we had a learning period.

If neither of the above two approaches is satisfactory, confidence
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intervals can be obtained using the nonidentical random variables., We
will, however, make the following approximation: If we are taking the
maximum (or minimum) sample from n independent samples, we will
assume they were all detected with the same threshold., As mentioned
above, this will almost always not be the case, but for equal apriori
probabilities of transmission, it will be very nearly true for large n,

since for each n signal bits that are transmitted, approximately the same
number of noise bits will be transmitted. Also note that this assumption,
even though violated, is not very critical, because the change in adjacent
threshold values should not be very great (see Fig. (4.2) ). In other words,
the only difference in n adjacent signal decisions or noise decisions is

that not all of them have been detected with the same threshold. However,
since it is highly unlikely (for low error rates and equal apriori trans-
mission probabilities) that more than two thresholds would have been used,
and since the difference in the two thresholds is small, the random vari-
ables resulting from decisions using these thresholds will be almost identi-
cally distributed,

Finally, it should be realized that this approximation is not theoret-
ically necessary, but is made so that we can use the analysis leading to
eqs. (4.4) and (4.9) (that is, so that we can approximate the density func-
tions by their asymptotes and thereby obtain a simple expression for the
densities of the extremes). If the random variables are not identically
distributed, we cannot obtain a simple exponential asymptote for their
densities, but we can still write down the exact distritution of the extremes
(assuming specific forms for the initial density as has usually been the case
when confidence intervals were required). For example, if we have made
i < n noise decisions at one threshold, and n - i ﬁoise decisions at another

threshold, the distribution of the maximum of the set is
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F__ (x) = F’; (x) Fg_i(x) ,

where Fl(x) is the distribution corresponding to the first threshold, and
FZ(X) is the distribution corresponding to the second threshold.

Proceeding now with the above assumption, the extreme from any
set of n random variables all detected at the same threshold has a density
which is given by either eq. (4.4) or eq. (4.9).

If we take N maxima and N mihima, where each one came from
a groupof n sarnples detected with a different threshold, and compute the
four Gumbel parameters, estimates of the probability of error, and the
threshold, we have functions of sample moments of nonidentically distri-
buted random variables.

To prove that all the estimates are normal random variables,
we start with a theorem given by R. de Misd¥s, 4.3 A sum of independent
nonidentically distributed random variables is asymptotically normally
distributed if the following conditions are satisfied:

Let xi, i=1...n, be any random variable with mean Hi and vari-

ance criz . Then the quantity

2 +
c, = flxi - iyl € f(x,) dx,

-2 n
must be bounded for some €> 0, andn te Z O'iz must go to infinity
i=1
as n goes to infinity.
. n n 2
Using this theorem,it can easily be shown that Z X, and Z xi

i=1 i=1
are asymptotically normal, where the x, are distributed according to

i
either eq. (4.4) or eq. (4.9). This can be seen by noting that these
densities are bounded on one side and go to zero as a double exponential
on the other side, so that all moments will exist of both X and xi2 o

In Appendix B, we use the above result to prove that the sample

variance is also asymptotically normal. This will enable us to extend
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Cramet's theorem on functions of identically distributed random variables
to our present case, and therefore we will have the result that all our
estimates are asymptotically normal.

Finally, a computer simulation was run to supply experimental
verification for the theory. The simulation showed that the threshold
changed by small amounts with each adaptation,so the approximation that
that n consecutive decisions were made with only one threshold was
reasonable.

Figure (4. 2) shows the result of the computer simulation of the
system. The signal density was a Rician with parameters A = 6,5 and
o = 1, and the noise came from a Rayleigh density with parameter ¢ = 1.
During the time delay, 2500 samples were collected, and the overall sam-
Ple mean was used as the first threshold. The samples were then de-
tected at that threshold until there were 1000 signal decisions and 1000
noise decisions. In each group of 1000 samples, N was set equal to 20,
and therefore n = 50, The four Gimbel parameters were then calculated
and this led to the first threshold adjustment. After that, the threshold
was continually changed each time either 50 signal decisions or 50 noise

decisions were made.
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Summarz

A nonparametric detector which can operate in any environment
which has noise having exponential-type characteristics has been studied.
The detector was based upon extreme -value theory.

In Chapter 1, a review of extreme-value theory was given, and it
was shown how this theory was to be used to detect digital signals in addi-
tive noise. EVT has previously been used in signal dete;:tion by engineers

at JPL, S.1

This work differs from their's in several respects. Only

a single exponential is used to estimate the probability of error, instead
of a double exponential. Also, one of the main objectives of this report
was to arrive at an estimate for the optimum threshold of the system.

In this last respect, this work differs from other nonparametric detectors,
since, to the author's knowledge, most nonparametric detectors are
radar-type detectors in that they choose the desired false alarm rate and
accept whatever false dismissal rate that results.

In Chapter 2, specific examples were given for detecting a con-
stant signal in additive noise, and a comparison was made between the
EVT detector and the rank detector.. The two significant results of that
comparison are that the EVT detector, in certain situations, will perform
as well as the optimum Neyman-Pearson parametric detector,and there-
fore better than the rank or any other nonparametric detector, and that
it will do so with significantly less effort than that required by other
nonparametric detectors,

Chapter 3 considers two detectors which can be used when the
signal is fading. The first detector uses a fixed threshold, and is not
of much practical use because it can only perform satisfactorily when the

variance of the fade is quite small. The second detector is an adaptive
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detector, and, to the author's knowledge, this method of using extreme-
value theory with a time-varying parameter has not been considered
before. Computer simulated results were presented for the adaptive
detector, and the computer results were in agreement with the theoretical
results,

Finally, in Chapter 4, we eliminated the learning period that was
essential to the results of the first three chapters, and resorted to deci-
sion-directed measurements. The asymptotic distributions of the esti-
mates were derived, and it was shown that satisfactory results could be
obtained if the error probabilities were low. As in Chapter 3, numerical
results obtained by a computer simulation were pr‘esented.

Among the problems which have not been solved and which seem
to be worth investigating is that of choosing an optimum value of n in two
situations.

The first case is when the learning period is present, but, regard-
less of what error probability is to be estimated, only nN = K samples
can be taken. That is, given K samples in a learning period, what is
the best way to divide them into N groups of n samples?

The second situation arises when the learning period is eliminated.
Since picking n too small results in inaccurate theoretical estimates
(because of the Taylor series only being accurate in a limited region
about the u's), and choosing n too large results in inaccurate statistical
estimates of the parameters, a compromise has to be made, However,
for any given error probability, it is not known how to make that com-

promise,
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Appendix A - Density Function for Minimum of n Independent Samples

The following is the derivation leading up to equation (1.8), and
is essentially the same as Gumbel's derivationA' ! which results in
equation (1. 7).

Expanding F(x), the distribution of the initial variate, about
X = uy, we have

X - uy (x-ul)
F(x) = F(u) + 77— £(u)) + —7 friu)+.oee (A.1)

where

F(ul) =

Factoring '1}1- out of eq. (A.1l), we obtain

o (X -u )k
F(x) = 1[1+; _k_,_l_ n &1 (ul)] . (A. 2)

-I-l- .
If eq. (1. 2) is now used at the point x = U, we obtain

f(ul) f! (ul)

F(ul) f(ul)

But
al =n f(ul) )

so we can write nf' (ul) as follows:

a
£u,) 'rlT 2
n f' (u) = nf(ul) F-(EI—T = (0.1) T— = Cl.l B
n

Differentiating both sides of eq. (l.2), and evaluating at x = u,,

we obtain

) [rep fep) P
f(up fz(ul) FTul) Fz(ul) s

or, again using eq. (1.2),
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2
Q Q
fu)) £ (u)) ( —n-1->(—n1 ) 3
—TFy n——mm——*=

- nfm (ul) = n 5 =4

n
We will now assume that

n £ (u;) = 0.1k+1 ’ (A.3)

and will show that this implies

N (A.4)

By mathematical induction, it will then follow that the equation holds for

all k.
To show this, consider
k+1
ak+1 [f(u )]
(k) 1 k 1
77 (uy) = =flu))ay = ——Tp—
[Ftap]
or

g(K) (u,) [ £(u,) ]k
7{‘717—- = ul . (A. 5)

Again differentiating both sides of the equation, we obtain

) o) kel o) et
ffu)) ) [f(“l)] z [F(ul)]k - [F(ul)]kﬂ
Using equation (A.5), we have
~fr——y——f(k+”(u1) = (k+ 1)[f(“1)]k-l £ (uy) [ftay)] K -
! ) [F(ul)]k [F(ul)]k i
(a1>k-1af (al)k+1
(k +1) ‘?Z‘l)KT k (?)Em - (k4 1) alk+1_ kalf“ _ GL11<+1 ’
n n

or,

k+1

nf(k+1) (ul) = ay

Therefore, we can rewrite eq. (A.2) as
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k
: oo (x = u.)

:F‘(x):;];-[l'l'ZQ.]}.c -—'E!-—l—] s (A.6)
1

or,
(A.7)

F(x):;ll- e

which is the asymptotic form we have used throughout this report.

To complete this derivation, it simply must be recalled that if

{:rl(x) is the cumulative distribution of the minimum of n samples, then
o (x - ul) n

§1(x)=1-[1-F(x)]n=1-[1-e . ] ,

and
o.l(x - ul)

lim  3(x) = l-e
n —eQ00

which is eq. (l. 8).
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Appendix B - Asymptotic Normality for Functions of Nonidentically

Distributed Random Variables

We will prove that if we have nonidentical random variables such
that Exi and Exlz are both asymptotically normal, then ':T Z(xi - S{)Zis
also asymptotically normal. The proof is simply an extension of a proof

given by CramérB' ! for identically distributed random variables.

2
Az _ 1 -
Let c- o= = Z(xi -x)
0'2 = E(ﬁ\'z) ,
| k -
mk = K in k— 1,2 ’
n, = E(m,) ,
0'2 = var (m)
m, My !
m, - n,
z, = T , and
1
m, -n
_ 2 2
ZZ had o'm L]
2

Then we have
2ot - 152 L D] [ - 5]

or

(92 - 0'2) = (rmz z, -[(zl L +n1)2 -E (3?2)]

2 -2 2
T z, - ano' z, - O'ml zg +[E(x ) - nl]

2 2 2
’) -
- gnlc' z1 i . z1 +0'ml

Consider the term 0'2 22 . We have E[lo'2 22 |] = 0'2 E(z2 ) =
m, 1 m, 1 m, 1
(g 2 times a number independent of n, since Zy, by definition, is asymp-

1
totically normal with zero mean and variance equal to unity. Also,
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2 - 1 . ... B.2
¢ . = var (x) = 0( H)' Therefore, by Tekebycheff's inequality ’
1
crin zf converges in probability to zero,

1
Therefore, ¢ 2 o 2 is a linear function of two asymptotically

normal random variables, and is therefore itself asymptotically normal, B.3
Having established the asymptotic normality of & 2. o 2, we can

now, step by step, use the proof of Cramérs theorem referred to in

Chapter 1 (see eqs. (l.29) and (1. 30))and therefore conclude that the

functions of the nonidentically distributed random variables given in

Chapter 4 are also asymptotically normal.
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